
The PracTEX Journal, 2007, No. 3
Article revision 09/04/2008, revised version

LATEX Document Management with
Subversion, rev: 25
Uwe Ziegenhagen

Email infoziegenhagen.latex@
Website http://www.uweziegenhagen.de
Address Humboldt-Universität zu Berlin, Germany

Center for Applied Statistics and Economics

Abstract From the single-author composition of a Bachelor thesis to the creation of
a book by a team there are many occasions, where version management of
a document may be helpful. With the aim of overcoming the shortcomings
of CVS (Concurrent Version System) the Subversion version control system
was implemented.

In this article I will describe the Subversion setup on Windows and Linux
systems, the elementary steps of document management and various LATEX
packages working hand in hand with Subversion.

Note: The original version of this article was published in the Prac-
TeX Journal issue 3/2007 and is available through http://www.tug.org/
pracjourn/2007-3/ziegenhagen/

1 CVS versus Subversion

Contrary to CVS the versioning scheme of Subversion does not refer to single files
anymore but to a whole tree of files. Each revision number n refers to the state
of the repository after the n-th commit. When we speak about a file in revision 4
we mean the file in the state of revision 4.

The revision numbers of a single file may even have gaps if it had not been
changed on every commit to the repository. Table 1 illustrates an example: Up
to revision 4 all files have been changed before each commit, so the revision of
the repository and the revision numbers of the files are equal. Before the commit
to revision 5 only chapter1.tex is modified however the whole repository receives
the revision number 5, before the commit to version 6 all files were modified
again and therefore have the revision number 6.

Copyright © 2008 Uwe Ziegenhagen.
Permission is granted to distribute verbatim or modified

copies of this document provided this notice remains intact.

http://www.uweziegenhagen.de
http://www.tug.org/pracjourn/2007-3/ziegenhagen/
http://www.tug.org/pracjourn/2007-3/ziegenhagen/

Table 1: Gaps in Subversion revisions
Revision 4 Revision 5 Revision 6
thesis.tex:4 thesis.tex:4 thesis.tex:6

preamble.tex:4 preamble.tex4 preamble.tex:6
chapter1.tex:4 chapter1.tex:5 chapter1.tex:6

On each checkout from a Subversion repository the highest revision number of
each file will be checked out which is smaller or equal to the desired revision
number. Subversion stores a second copy of each file in a special directory (.svn)
on each checkout, update and commit.

Although the required space on the hard-disk doubles there are certain ad-
vantages, especially when the repository is on a remote server: Local changes
can be viewed without access to the network and on the commit of a file Subver-
sion has only to send the changed parts whereas CVS calculates the changes on
the server and has to send the whole file on each commit. Commits are atomic,
which means a change to a file is either completely stored or not stored at all.
Thus network issues or concurrent commits cannot lead to an inconsistent status.

2 Installation

There are different options for the installation of Subversion. One can either use
svnserve [3] or install Subversion as an Apache 2 module, which uses WebDAV1.

In this article I will focus on the latter option by installing Subversion as an
Apache2 module, since the integration into Apache 2 provides a few interesting
features such as the possibility of browsing through repositories using a web
browser and the use of the Apache authentification mechanisms.

1. Web-based Distributed Authoring and Versioning, a set of extensions to the HTTP protocol which
allows users to collaboratively edit and manage files on remote web servers.

2

2.1 Windows XP

2.1.1 Apache Setup

Binary versions of Apache 2 are available from [1], however I usually prefer to use
a WAMP2-solution provided by apachefriends.org. We extract the xampp.zip3 to
e.g. C:/xampp and start the Apache server using xampp-control.exe. When we
open http://localhost in a web browser the XAMPP start page should show up
as depicted in Figure 1.

Figure 1: Screenshot of xampp starting page

As we assume that only the local computer will be allowed to access the webserver
it is necessary to secure the machine against access from outside. For details
please see the respective chapter in the Apache documentation [7].

2. Windows-Apache-MySQL-PHP
3. current version at printtime: 1.6.6a

3

2.1.2 Subversion

We download Subversion4 from [2] and extract all files from the zip archive to
e.g. C:/Program Files/Subversion. After adding the path to the C:/Program
Files/Subversion/bin directory to the PATH environment variable from Win-
dows, we can call svn help from the commandline to check if our installation is
working. In the next step we copy mod_authz_svn.so and mod_dav_svn.so from
the subversion/bin directory to the Apache modules directory and overwrite
older versions of these files if necessary.

In the final step we enable WebDAV and the Subversion module by adding
– LoadModule dav_svn_module modules/mod_dav_svn.so and
– LoadModule authz_svn_module modules/mod_authz_svn.so

to the httpd.conf in the Apache /conf directory. Before we restart Apache to
load the modules we need to make further adjustments to this file. We create a
root directory for all our repositories (e.g. c:/allMyRepositories) and add the
code from Listing 1 to httpd.conf:

1 <Location /svn>
2 DAV svn
3

4 SVNParentPath c:/allMyRepositories
5 </Location>

Listing 1: Setup code for the Windows repository root

From the command line we change to the c:/allMyRepositories directory and
create our first repository by executing svnadmin create firstSample.

If we now open http://localhost/svn/firstSample/ in a browser we should
see an empty directory listing with the headline Revision 0: /. The basic in-
stallation of Subversion is now done, however we can achieve a much more con-
venient way of handling repositories by installing TortoiseSVN.

2.1.3 TortoiseSVN

TortoiseSVN5 [4] is a free Subversion client, implemented as a Windows shell
extension. It features a multilingual interface with Windows Explorer integration,

4. current version at printtime: 1.4.6
5. current version at printtime: 1.4.8

4

http://localhost/svn/firstSample/

its icon overlays show immediately which files/folders have been changed and
need to be committed to the repository. The installation is straightforward, after
rebooting the computer we find various entries in the context menu to manage
our repositories. Besides there are more clients available, for example RapidSVN
(Windows, Unix/Linux) and SVNcommander (Linux).

Figure 2: Screenshot of a Working Directory with TortoiseSVN installed and con-
text menu of TortoiseSVN 1.4.6.

2.2 Linux (Ubuntu 7.10)

The installation on a Linux system is much easier than the installation on Win-
dows. Using sudo apt-get install or the Synaptic package manager we install
the following packages:

– apache2.2-common and apache2-utils

– libapache2-svn

– subversion

Additional packages are selected automatically by the package management tool.
After the installation of these packages the last remaining step is to make the
necessary adjustments to /etc/apache2/sites-available/default and to set the
access rights for this directory via chmod -R 770 /home/uwe/repositoryRoot as
depicted in Listing 2.

5

1 <Location /svn>
2 DAV svn
3

4 SVNParentPath /home/uwe/repositoryRoot
5 </Location>

Listing 2: Setup code for the Linux repository root

2.3 svnserve under Linux

I recently checked the svnserve daemon under Ubuntu 7.x, the setup procedure
was as following: Using apt-get install subversion I downloaded and in-
stalled the latest subversion package (For most of these commands sudo may
be necessary when working with Ubuntu).

The next step is to create the necessary folders by mkdir /srv/svn and mkdir
/srv/svn/repos and svnadmin create /srv/svn/repos/test and to create a new
user named ’svn’, as it may be a potential security risk to have the svnserve
process run with root privileges: useradd -d /home/svn -m svn. Listing 3 shows
the necessary commands to set the rights.

1 addgroup subversion # creates a group ’subversion’
2 adduser svn subversion # add user svn to group ’subversion’
3 chgrp -R subversion /srv/svn/ # set group ’subversion’ for all files
4 chown -R svn /srv/svn/repos # change the owner of the repos dir
5 chmod -R o-rwx /srv/svn/ # no one else is allowed to do anything
6 chmod -R g+rw /srv/svn/ # grant write access to group members
7 chmod -R g+s /srv/svn/ # allow logs to be written

Listing 3: Linux commands for setting the access rights (to be changed later, allow
write access for everybody)

Next we create a repository by svnadmin create /srv/svn/repos/test and edit
the subversion.conf in the conf subdirectory as shown in Listing 4. We will
temporarily allow anonymous writing and reading. We will set up the correct
access rights in a later step.

6

1 [general]
2 ### These options control access to the repository for unauthenticated
3 ### and authenticated users. Valid values are "write", "read",
4 ### and "none". The sample settings below are the defaults.
5 anon-access = write
6 auth-access = write

Listing 4: Commands for setting the rights

The next step is to modify the iptables firewall settings by running iptables
-A INPUT -p tcp –dport 3690 -j ACCEPT from the commandline. From this mo-
ment iptables should let subversion communication pass the filters. Using the
svn user we start the svnserve daemon now using svnserve -d –listen-host
<ip>-r /srv/svn/repos. netstat -tulpen should bring some output similar to
the one in Listing 5.

1 root@:~# netstat -tulpen
2 Active Internet connections (only servers)
3 Proto Recv-Q Send-Q Local Address Foreign Address State User Inode PID/

Program name
4 tcp 0 0 <ip>:3690 0.0.0.0:* LISTEN 1000 615571 22047/svnserve
5 tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 0 615506 21997/sshd

Listing 5: Using netstat to check svnserve

If we run now svn co svn://<IP>/test or use TortoiseSVN there should come
a message indicating that revision 0 was successfully checked out. What if you
receive an error instead? If the connection fails there is high probability that the
iptables configuration is faulty and needs to be checked. If the connection is
made but subversion complains about denied access, check the subversion.conf
settings. If anything else fails just drop the error message into Google.

As mentioned above security issues have not been touched so far, so we need
to block access from unauthenticated users in the next step. We set the rights that
way, that only authenticated users may access the repository and uncomment the
line with the password-db, see Listing 6.

7

1 [general]
2 ### These options control access to the repository for unauthenticated
3 ### and authenticated users. Valid values are "write", "read",
4 ### and "none". The sample settings below are the defaults.
5 anon-access = none
6 auth-access = write
7 ### The password-db option controls the location of the password
8 ### database file. Unless you specify a path starting with a /,
9 ### the file’s location is relative to the conf directory.

10 ### Uncomment the line below to use the default password file.
11 password-db = passwd

Listing 6: Restricting the use of the repository

Listing 7 shows the password-db file created by subversion with one user added,
note that the passwords are saved in unencrypted plain text. Please also note that
the communication itself is still unencrypted so this way of accessing the reposi-
tories should be used only in trusted environments. Fo untrusted networks one
can tunnel all subversion traffic through SSH, for details please see the manual.

1 ### This file is an example password file for svnserve.
2 ### Its format is similar to that of svnserve.conf. As shown in the
3 ### example below it contains one section labelled [users].
4 ### The name and password for each user follow, one account per line.
5

6 [users]
7 # harry = harryssecret
8 # sally = sallyssecret
9 andreas=mypassword

Listing 7: Example password-db file

2.4 Repository Usage

2.4.1 Adding files to the repository

To fill the repository we created during the installation we create a empty di-
rectory (all files in this directory will be imported to the repository) which we

8

populate with a small LATEX document (article-template.tex):

1 \documentclass{article}
2 \begin{document}
3

4 Hello World!
5

6 \end{document}

Listing 8: A simple LATEX file

Using the the command line (svn import http://localhost/svn/firstSample/
- m "import") or the TortoiseSVN context menu we can now import the file us-
ing our URL for the repository http://localhost/svn/firstSample/ and use
"import" as comment. Apache will list now Revision 1: / when we browse the
repository (see Figure 3. To work with the files we need check them out into a
working directory. The files in the working directory are the files we edit, all
future commits are made from this directory.

Figure 3: Repository browsing with Apache and Subversion Module

9

http://localhost/svn/firstSample/

2.4.2 Backing and Restore

The introduction of Subversion as a version control system cannot be valued high
enough in cases of damaged harddrives or stolen computers. However, of equal
importance is the backup of the Subversion repositories. The important Sub-
version commands are svnadmin dump and svnadmin load. For details on those
commands see the Subversion manual [6].

2.4.3 Copying, Moving and Deleting Files

svn move

3 Integration with LATEX

To integrate the Subversion metadata in our LATEX files we need to include the
keywords in the LATEX-file and tell Subversion to expand them. The following list
contains the available keywords and their description:

Date (LastChangedAt) date and time of last check-in
Revision: (LastChangedRevision) the number of the revision
Author: (LastChangedBy) name of the submitting author
HeadURL: the URL of this file
Id: a summary of the above keywords

10

Figure 4: Set subversion keywords via TortoiseSVN context menu

After running svn propset svn:keywords "Date HeadURL Revision Id"
article_template.tex from the commandline or using the TortoiseSVN context
menu (see Figure 4) Subversion will expand those keywords (enclosed in $) in
our file when we include them in the LATEX code. Subversion will expand the
keywords as following:

11

1 % $Revision: 25 $
2 % $HeadURL: http://tools.assembla.com/svn/svnArticle/svnArticle.tex $
3 % $Date: 2008-04-09 09:27:54 +0200 (Mi, 09 Apr 2008) $
4 % $Author$
5 % $Id: svnArticle.tex 25 2008-04-09 07:27:54Z uweziegenhagen $
6

7 \documentclass{article}
8 \begin{document}
9 Hello World!

10 \end{document}

Listing 9: A sample file with expanded Subversion keywords

All LATEXpackages introduced in the following are based on the evaluation of
these keywords.

3.1 svn

The svn package allows access the metainformation by evaluating the Subversion
information using a \SVN $Keyword: <metadata>$ syntax. If the keywords are
correctly expanded, then the svn package defines:

– \SVNDate for the date of the checkin, \SVNTime as the check-in time and
\SVNRawDate as raw date and time if Keyword was $Date$.

– \SVNKeyword otherwise (Examples: \SVNId, \SVNHeadURL)

July 15, 2007
2007-07-15 17:33:30 +0200 (So, 15 Jul 2007)
17:33:30
article-template.tex 12 2007-07-15 15:33:30Z
http://localhost/svn/firstSample/article-template.tex

1

Figure 5: Output of article-template.tex (see Listing 10 with svn package

12

1 \documentclass{article}
2 \usepackage{svn}
3

4 \SVN $Id: svnArticle.tex 25 2008-04-09 07:27:54Z uweziegenhagen $
5 \SVN $Date: 2008-04-09 09:27:54 +0200 (Mi, 09 Apr 2008) $
6 \SVN $Id: svnArticle.tex 25 2008-04-09 07:27:54Z uweziegenhagen $
7 \SVN $HeadURL: http://tools.assembla.com/svn/svnArticle/svnArticle.tex $
8

9 \begin{document}
10

11 \SVNDate \\
12 \SVNRawDate \\
13 \SVNTime \\
14 \SVNId \\
15 \SVNHeadURL
16 \end{document}

Listing 10: A sample file using the svn package

3.2 svninfo

The svninfo package needs information from the Id keyword only which need
to follow the \svnInfo command: \svnInfo Id : article− template− svn− in f o.tex182007−
07− 1516 : 11 : 21Z

To use the meta information the package defines the following commands:
– \svnInfoFile the name of the file
– \svnInfoRevision the revision number
– \svnInfoDate the date of the last check-in
– \svnInfoTime the time of the last check-in
– \svnInfoYear the year of \svnInfoDate
– \svnInfoMonth the month of \svnInfoDate
– \svnInfoDay the day of \svnInfoDate
– \svnInfoOwner the owner of the file (if specified at check-in)
– \svnToday date of last check-in in the \today format
– \svnInfoMinRevision the minimum revision of the document
– \svnInfoMaxRevision the maximum revision of the document

13

\svnInfoMinRevision and \svnInfoMaxRevision are useful for multi-file docu-
ments. Furthermore the packages allows a few optional parameters such as
fancyhdr, eso-foot, scrpage2 to typeset Subversion information in the margin
or the footer of the document. For details please see the manual.

3.3 svn-multi

The svn-multi package provides two commands, \svnid and \svnidlong, to cap-
ture the input from Subversion. To use the variables, the package provides the
following commands:

– \svnrev the revision
– \svndate the date of the last check-in
– \svnauthor the author
– \svnfilerev the revision of the current file if it contains a \svnid or \svn-
idlong or the values of the last file if it does not contain one of these com-
mands

– \svnmainurl and \svnmainfilename typeset the URL respectively name of
the main file, as it was defined by the internal command \svnmainfile at
the end of the preamble

Furthermore svn-multi uses \svn{keyword } and \svnkw{keyword } to print
Subversion keywords directly. To access date information the package provides
some more commands, explanations can be seen directly from each respective
name: \svnfileyear, \svnfilemonth, \svnfileday, \svnfilehour, \svnfileminute,
\svnfilesecond, \svnfiletimezone, \svnyear, \svnmonth, \svnday, \svnhour,
\svnminute, \svnsecond and \svntimezone.

4 Conclusion

This article described the basic usage of Subversion from LATEX and the most
common features of the three LATEX packages svn, svninfo and svn-multi. More
information about integration with LATEX or Subversion itself can be found in
the documentation of the packages or in books on Subversion ([6, 8]. Feedback
on this article is welcome, if you find any mistakes or have comments please
send me an email. Updates of the article can later be found online at http:
//www.uweziegenhagen.de/latex/

14

http://www.uweziegenhagen.de/latex/
http://www.uweziegenhagen.de/latex/

References

[1] Apache 2 web server. URL http://httpd.apache.org.

[2] Subversion. URL http://subversion.tigris.org/.

[3] Svnserve based server. URL http://tortoisesvn.net/docs/nightly/
TortoiseSVN_en/tsvn-serversetup-svnserve.html.

[4] TortoiseSVN. URL http://tortoisesvn.tigris.org.

[5] apachefriends.org. Xampp. URL http://www.apachefriends.org/en/.

[6] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. M. Pilato. Version Control
with Subversion. Next Generation Open Source Version Control. O’Reilly, 2004.
URL http://svnbook.red-bean.com/.

[7] Apache Foundation. Apache HTTP server version 2.2 documentation. URL
http://httpd.apache.org/docs/2.0/en/.

[8] Mike Mason. Pragmatic Version Control Using Subversion. Pragmatic Program-
mers LLC., 2006.

15

http://httpd.apache.org
http://subversion.tigris.org/
http://tortoisesvn.net/docs/nightly/TortoiseSVN_en/tsvn-serversetup-svnserve.html
http://tortoisesvn.net/docs/nightly/TortoiseSVN_en/tsvn-serversetup-svnserve.html
http://tortoisesvn.tigris.org
http://www.apachefriends.org/en/
http://svnbook.red-bean.com/
http://httpd.apache.org/docs/2.0/en/

	1 CVS versus Subversion
	2 Installation
	2.1 Windows XP
	2.1.1 Apache Setup
	2.1.2 Subversion
	2.1.3 TortoiseSVN

	2.2 Linux (Ubuntu 7.10)
	2.3 svnserve under Linux
	2.4 Repository Usage
	2.4.1 Adding files to the repository
	2.4.2 Backing and Restore
	2.4.3 Copying, Moving and Deleting Files

	3 Integration with LaTeX
	3.1 svn
	3.2 svninfo
	3.3 svn-multi

	4 Conclusion

